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ABSTRACT 
Word-gesture keyboards enable fast text entry by letting 
users draw the shape of a word on the input surface. Such 
keyboards have been used extensively for touch devices, 
but not in mid-air, even though their fluent gestural input 
seems well suited for this modality. We present Vulture, a 
word-gesture keyboard for mid-air operation. Vulture 
adapts touch based word-gesture algorithms to work in mid-
air, projects users’ movement onto the display, and uses 
pinch as a word delimiter. A first 10-session study suggests 
text-entry rates of 20.6 Words Per Minute (WPM) and finds 
hand-movement speed to be the primary predictor of WPM. 
A second study shows that with training on a few phrases, 
participants do 28.1 WPM, 59% of the text-entry rate of 
direct touch input. Participants’ recall of trained gestures in 
mid-air was low, suggesting that visual feedback is 
important but also limits performance. Based on data from 
the studies, we discuss improvements to Vulture and some 
alternative designs for mid-air text entry. 

Author Keywords 
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INTRODUCTION  
Mid-air interaction is an emerging input modality for large 
displays [20], mobile phones [9], augmented reality [23], 
and desktop computers [29]. Facilitated by improved 
tracking equipment, mid-air techniques cover many types of 
interaction. For instance, mid-air pointing enables selection 
and manipulation of objects (e.g., [2, 6, 10, 28, 30]). 
Writing text in mid-air, however, has received less 
attention. Text entry is an important activity and supporting 
it in mid-air would be beneficial for a number of scenarios 
such as work in sterile conditions (e.g., operating theatres), 
in augmented reality (e.g., with Google Glass), and when 
writing on public displays. It has been shown that people 
can write in mid-air with devices such as game controllers 
and dedicated gloves [21], but also using their hands [12, 
18]. However, text-entry rates for mid-air interaction are 
low, around 13 [18] to 18.9 WPM [27]; the latter rate was 
obtained with tactile feedback on errors and no character 
production on errors. Furthermore, most techniques support 
only single-character text entry (e.g., [18, 21, 27]). So mid-
air text entry is still relatively slow and better techniques 
should be developed to make mid-air text entry practical. 
Hence, we study if speed can be improved by moving from 
selection-based text entry to gestural input.  

Word-gesture keyboards (WGK) (e.g., SlideIT, Swype and 
ShapeWriter) have gained popularity (e.g., a WGK is now 
shipped  as standard on Android devices) and perform well 
on touch screens [11, 36, 37].  The key idea of WGKs is 
that the user enters a word by drawing the pattern formed 
by its letters on the input surface rather than by typing the 
letters. When implemented with the QWERTY layout, 
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Figure 1. Text entry using word-gestures in mid-air: By moving the hand, the user places the cursor over the first letter of the 

word and (1) makes a pinch gesture with thumb and index finger, (2) then traces the word in the air—the trace is shown on the 
screen. (3) Upon releasing the pinch, the five words that best match the gesture are proposed; the top match is pre-selected. 
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WGKs allow users to benefit from previous experience. 
Furthermore, WGKs provide a fluent way of writing words 
as gestures while also supporting simple tapping input.  

The present paper suggests that WGKs may be beneficial to 
mid-air text entry. However, transferring WGK to mid-air is 
hard: what are the delimiters of words, what is the 
equivalent of tapping and releasing in mid-air, and will the 
prediction algorithms for WGKs, developed for direct 
surface input [13], work in mid-air? 

In the rest of the paper we describe a system, Vulture, for 
doing mid-air text entry that answers some of these 
questions. We also describe two formative studies of 
Vulture: one study estimates the text-entry rate of Vulture 
and another study compares the performance and recall of 
gestures with Vulture to a touch-based WGK.  

RELATED WORK 
To our knowledge, the potential of WGKs in mid-air have 
not before been evaluated, but the literature offers relevant 
research on in-air gestures [31], freehand gestures [30], and 
mid-air interaction [20, 27]. This walkthrough of related 
work focuses on mid-air pointing, mid-air text entry, and 
WGKs, as these directly relate to the focus of this paper. 

Mid-air Pointing 
Much research on mid-air interaction concerns pointing [2, 
6, 10, 28, 30]. Mid-air pointing is generally done through 
variations of ray casting that differ in speed, error rate, and 
fatigue. Generally, ray-casting techniques are fast for coarse 
movements, but provide limited precision due to for 
instance hand tremor. Furthermore, ray-casting techniques 
are generally distance-dependent [27], meaning that 
precision degrades as the user moves away from the 
display. One way to minimize distance-dependence is to 
project movement orthogonally onto the display as done by 
Markussen et al. [18]. Orthogonal projection limits the 
user’s reach, but maintain a constant control-display ratio 
across distances. 

Mid-air text entry 
Earlier work on text entry in mid-air takes two main forms. 
In selection-based techniques, users make series of 
movements and selections to produce individual characters. 
Shoemaker et al. [27] used a Nintendo Wiimote for mid-air 
interaction, and proposed three selection-based text-entry 
methods using a 3D cube layout of letters, a circular layout, 
and a regular QWERTY layout. The QWERTY-based 
keyboard was preferred and fastest with 18.9 WPM. 
Contrary to more recent text-entry studies, Shoemaker et al. 
used a restricted text-entry setup that provided tactile 
feedback on errors and no character production on errors. 
Markussen et al. [18] adapted three text-entry methods to 
selection-based mid-air text entry. A mean text-entry rate of 
13.2 WPM was observed for a QWERTY-based text-entry 
method that used orthogonal projection of the hand position 
onto the display.  

In gesture-based techniques, users produce gestures that are 
interpreted as letters. Ni et al. [21] created AirStroke, a 
Graffiti based text-entry method that was evaluated with 
word completion (11.0 WPM) and without (6.5 WPM). 
Kristensson et al. [12] showed that continuous recognition 
of gestures within a defined input zone in front of the user 
is possible using the Graffiti alphabet [5]. The system was 
implemented using a Kinect. The focus of the paper was on 
gesture recognition rather than on text-entry rate, and the 
paper reported no performance measure relating to speed. 

Two alternatives to these approaches have been researched. 
Mid-air handwriting recognition has been explored using 
various sensors and camera-based recognition systems (e.g. 
[1, 25, 26]). Experiments have primarily focused on 
recognition quality, with recognition rates of up to 97%, 
rather than text-entry rate. However, regular hand-writing is 
limited to approximately 15 WPM [7]. We expect mid-air 
handwriting to be subject to similar limitations. Another 
alternative for mid-air text entry is sign language for which 
conversational speeds of 175 – 225 WPM have been 
reported [19]. However, sign language recognition is 
challenging and learning sign language requires more 
training than most users are willing to invest. 

Word-Gesture Keyboards (WGKs) 
WGKs, originally referred to as shape writing keyboards, 
were introduced by Zhai and Kristensson [11, 13, 35, 36, 
37]. Instead of typing a word, the user draws its shape (the 
line connecting the letters in the word) on top of a visual 
representation of the keyboard. The method was designed 
for stylus input and has later proven useful for touch-based 
text entry. On mobile devices, WGKs have gained enough 
success to become a standard part of many soft keyboards. 
Studies have shown that novice users of WGKs write 25 
WPM after 35 minutes of practice and 46.5 WPM for single 
well-practiced phrases [11]. 

An important part of implementing a WGK is to develop 
efficient and effective shape recognition algorithms. 
Previous studies of WGKs give few details on the 
algorithms behind the recognition of word gestures, 
possibly due to the commercialization of WGKs for mobile 
phones. To our knowledge, SHARK2 [11, 13] provides the 
most detailed descriptions of a WGK implementation.  

SHARK2 bases its recognition on two recognition channels: 
A shape channel and a location channel. The channels 
estimate the probability of a given shape being a word from 
the vocabulary. The shape channel normalizes the drawn 
shape to a specific location and size, and estimates how 
well it matches the shape of each word in the vocabulary. 
The normalization has the disadvantage that a relatively 
large number of ambiguous shapes occur in a normal 
English vocabulary. The location channel helps minimize 
these ambiguities by distinguishing similar shapes by their 
different locations. Ultimately, the probabilities from the 
two channels are integrated into one probability measure. 

Session: Mid-Air Gestures CHI 2014, One of a CHInd, Toronto, ON, Canada

1074



We are unaware of work trying to adapt WGKs to mid-air; 
the next section outlines the main challenges in doing so. 

VULTURE: A MID-AIR WORD-GESTURE KEYBOARD 
Below we describe how interaction with Vulture works, the 
design choices made, and how the word-gesture recognition 
in Vulture is implemented.  

Writing with Vulture 
The operation of Vulture is illustrated in Figure 1. The 
system works by tracking the user’s hand and fingers. To 
enable input using both elbow and wrist movement, the 
hand’s position, orientation, and an initial calibration of the 
user’s pinch is used to estimate the position where pinches 
are expected to occur. This position controls a cursor, 
represented as a dot. The interaction was originally based 
on orthogonal projection, but a control-display (CD) ratio 
was applied to support interactions from a distance while 
maintaining a readable user interface. The user writes a 
word by placing the cursor in the first letter of the word, 
making a pinch gesture (with the index finger and the 
thumb), then tracing the letters of the word, and finally 
releasing the pinch. While the user is not writing, the cursor 
is red. Upon pinching the cursor turns green and the 
cursor’s movement is traced over the keyboard. After 
completing a word-gesture, the five words that best match 
the gesture are shown in the list of suggestions; more than 
five was expected to provide little improvement [14]. The 
user can continue writing and implicitly confirm that the 
highlighted word was a match or the user can select a word 
from the list of suggestions. Also, the user can undo the 
suggested word in the text input field by selecting 
backspace or delete previously typed words by multiple 
selections of backspace. The four basic interactions—
match, select, undo, and delete—will be used extensively in 
later parts of the paper. 

Designing a Mid-Air WGK 
Previous WGKs have been designed for use on touch- or 
stylus-enabled surfaces. Bringing WGKs away from the 
surface and into mid-air implies three major considerations. 

Separating words 
Surface-based WGKs benefit from an implicit delimiter, in 
that a gesture begins when the finger or stylus is put on the 
surface, and ends when it is lifted away from the surface. 
This implicit delimiter is not available in mid-air. We 
consider four options: (1) Implement a WGK that requires 
no delimiter, requiring auto segmentation of input in order 
to identify words similar to what has been done for 
unistroke gestures [12]; (2) incorporate delimiters into the 
shape that is written (e.g., pig-tails [33] or crossing a certain 
part of the keyboard to end a word); (3) use some of the 
extra degrees of freedom available in mid-air (e.g., depth) 
to indicate word separation; or (4) use recognizable hand 
gestures that can serve as word delimiters (e.g., pinching 
while gesturing).  

All four options could potentially provide good results, but 
the first two require recognition algorithms significantly 
different from existing WGK implementations; they could 
be topics for future research if WGKs shows to be useful in 
mid-air. We tested (3) and (4) with users and found the last 
option to be liked the most. We therefore settled on 
pinching as a word delimiter in Vulture. 

Separation of motor space and display space 
One advantage of surface-based WGKs is the direct 
coupling of input and output space, which gives users direct 
feedback on interaction as it occurs. A mid-air WGK offers 
no such direct coupling. Designing the mapping of input 
and output space for mid-air interaction opens up a complex 
design space. We prototyped different mappings of the 
input and output space (e.g., providing a slanted or 
horizontal input plane to minimize user fatigue). However, 
users found it hard to adapt to these mappings. To minimize 
effects of separation, we therefore chose a planar input 
space parallel to the display. 

Size of motor space 
The size of the motor space that users are interacting within 
can potentially impact performance. However, a priori 
prediction of the optimal size is hard. Even with advanced 
biomechanical simulations, the interplay between 
recognition algorithms and biomechanics is highly 
complex. To add further complexity, the optimal size is 
expected to vary among users and to evolve over time. We 
informally tested different sizes of motor space to identify a 
size that allowed for fast movements while maintaining the 
user’s ability to draw shapes of sufficient quality. We ended 
up mapping the boundaries of the keyboard to a rectangle of 
approximately 20 × 5.5 cm. 

Word-Gesture Recognition 
Vulture is based on the same integration of shape and 
location channels as SHARK2. Below, we describe the 
specific implementation of Vulture. 

Initially, each word in the dictionary is processed into a 
template for comparison. The optimal shape, calculated as 
the line connecting the key center of each of the letters in 
the word, is resampled to a fixed number of equidistant 
points. We found 50 samples to perform well. Furthermore, 
a normalized shape is calculated based on the resampled 
shape and the shape channel calculation described below.  

Before processing a drawn shape, the shape is resampled to 
the same number of equidistant points as the dictionary 
templates. To minimize the number of ambiguities and to 
reduce processing time, the vocabulary is pruned by 
considering only words with an optimal starting position 
less than 1 key-width and ending position less than 2 key-
widths away from the evaluated shape’s start and end point. 

We iteratively developed and refined the implementation of 
the shape and location channels based on user feedback 
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from informal evaluations. Below we describe the 
implementation found to perform the best. 

Shape channel 
The resampled shape is translated to the origin and 
normalized to make it location and size invariant. 
Normalization is done by scaling the shape to a square in 
the same way as in the $1 recognizer [34].  

The distance function that produces the output of the shape 
channel is identical to the one used in SHARK2: The output 
of the shape channel is the average spatial distance between 
corresponding equidistant points in the compared shapes. 

Location channel 
The location channel score  is calculated as follows: 

 
where  are the sample 
weights, is the unknown shape that are being compared to 
the template word , and  is a radius that is used to 
reward individual samples. 

The location channel has two primary features. First, each 
sample index has an associated alpha weight. This is used 
to modify the weight of the individual samples so that some 
samples can receive higher weight. Second, the pairwise 
distances between corresponding samples are calculated. If 
the sample distance is less than a half key-width ( ), the 
sample distance is set to zero. This has the effect that 
slightly more words are considered good candidates by the 
location channel, and increases the shape channel’s 
discriminatory power in cases of location similarities. The 
sample distances are weighed using the alpha weights and 
summed to provide the location channel score. 

Participants in a pilot study felt more precise in the starting 
location of the word than in the rest of the word. We 
collected data showing that the first sample of the trace fell 
within the desired key 95 % of the time, whereas the last 
sample of the trace was only within the desired key 80 % of 
the time. Hence, we decided to assign extra weight to the 
first sample using the following weighing function: 

 

Single key words 
Due to the scaling function of the shape channel, single key 
input becomes a challenge. Very short shapes drawn in an 
attempt to produce single characters are rescaled and the 
shape channel promotes longer words with similar shapes. 

To avoid this behavior, shapes of lengths less than 0.4 key 
width are truncated to contain only the starting point before 
resampling, effectively cancelling the unwanted effect of 
the shape channel scaling. 

STUDY 1: THE POTENTIAL OF A WGK IN MID-AIR 
This study was designed to provide us with: (1) estimates of 
the potential text-entry performance of mid-air WGKs, both 
users’ initial performance and improvement over time, (2) 
text-entry data for tuning the parameters of Vulture, and (3) 
data for analyzing the errors that users make. 

Study Design 
Participants completed 10 sessions of text entry using 
Vulture. During each session, participants transcribed 4 
blocks of 10 phrases sampled randomly (no phrases 
occurred twice in a session) from the MacKenzie and 
Soukoreff corpus [16]. This resulted in a total of 6 
participants	
 × 10 sessions × 4 blocks × 10 phrases = 2400 
transcribed phrases. 

Study Setup 
The study was conducted on a 2.8 × 1.2 m large high-
resolution display, one use case of mid-air text entry, with 
7680 × 3240 pixels (see Figure 2). We used an OptiTrack 
motion-capture system, providing 100 frames per second of 
tracking information. Although expensive, the system 
ensures reliable results and minimizes the effects of 
tracking noise. Furthermore, as low-cost tracking systems 
are currently improving rapidly, using the OptiTrack system 
could also improve comparability with future research. To 
minimize the effects of participants’ hand tremor, we 
smoothed the input using the 1€ filter [4]. 

Participants stood 1.5 m from the display while using 
Vulture. To make the keyboard easy to read, the window 
containing the keyboard was 40 × 11 cm. The difference in 
keyboard size in motor space and display space results in a 
CD ratio of 1:2. 

For the study, Vulture matched shapes against a dictionary 
of 10,246 words. This number was based on the assumption 
that an average English speaker has a vocabulary of 
approximately 10,000 words [22]; it is also similar to that 
of the initial design criteria for SHARK2. The dictionary 
was constructed from the British National Corpus 
(ftp://ftp.itri.bton.ac.uk/) by taking words with a frequency 
greater than or equal to 600 and that contain only alphabetic 
characters. To support word-gesture based transcription of 

 
 Figure 2: The study used a large high-resolution display and 
users wore a glove with reflective markers in order to track 

the position of their hand and fingers. 
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the MacKenzie–Soukoreff corpus [16], words missing from 
the corpus were added to the dictionary. 

To enable analysis, all tracking data were logged along with 
details on text entry including the four basic interactions 
described earlier, the word gestures produced, the presented 
and transcribed phrases, and timing data. 

Participants 
We recruited 6 paid volunteers (1 male), 5 right-handed, 
Participant ages ranged from 21 to 53 (M = 29.3). 
Participants’ previous experiences with WGKs were 
between 1 and 3 (M = 1.3) on a seven-point scale from “1 - 
No experience” to “7 - Expert”. Their written English skills 
were between 3 and 6 (M = 4.5) on a seven-point scale from 
“1 - No English skills“ to “7 - Native”. 

Procedure 
Before text entry began, the system was calibrated. During 
calibration, participants defined the hand position that 
mapped to the center of the keyboard by placing their 
elbows to their sides and the writing arm bent to 90 degrees. 
Hand movement relative to this posture was mapped to 
cursor movement on the keyboard. This posture was 
preferred by pilot participants. 

In each of the 10 sessions, participants were allowed some 
time to (re)-familiarize themselves with the operation of 
Vulture before starting to write. On average, participants 
wrote 1.8 phrases at the beginning of each session.  

Participants were instructed to write the phrases “as quickly 
and accurately as possible - as if typing e-mail to a 
colleague”. Between each block of 10 phrases, users were 
allowed a break of up to three minutes. To complete a 
phrase, participants clicked a “Phrase done” button shown 
below the keyboard. Before continuing to the next phrase, 
participants were shown a window with their mean text-
entry rate and the rate of the previous phrase. 

After each session, participants were interviewed about 
their impression of Vulture, the recognition quality, and any 
technical issues they had experienced. On average, each 
session lasted approximately 30 minutes. 

Dependent Measures 
On the phrase level, we analyze text-entry rate and error 
rates; on the word-gesture level we analyze correctness and 
distance measures.  

Text-entry rate is measured in Words Per Minute (WPM), 
as in [3], with this formula 

 
where  is the length of the transcribed string, S is time in 
seconds. We use  instead of  since the time to 

produce the first character is included when timing word 
gestures [17]. 

Error rate is based on Minimum Word Distance (MWD). 
MWD is calculated in same way as the Minimum String 
Distance (MSD) [15], but on a per-word level rather than 
on a per-character level. Hence, MWD describes the 
minimum number of word-substitutions, -insertions, and  
-deletions needed to make strings identical. MWD error rate 
is calculated in the same way as MSD error rate, but on a 
per-word level: 

 
where  and  are the sets of words in the presented and 
transcribed strings, and  is the mean size of the optimal 
alignments calculated on a per-word level rather than a per-
character level. MWD error rates will generally be higher 
than MSD error rates, because whole words are classified as 
wrong if they contain one or more erroneous characters. 

Correctness of a single word gesture was determined by 
comparing it to the users’ intended word. As long as the 
current words in the transcribed string match the beginning 
of the presented string, we consider the next word in the 
presented string to be intended. When the strings do not 
match (e.g., due to errors earlier in the string), we classify 
the users’ intention manually based on a visualization of the 
drawn shape on top of a keyboard, the currently transcribed 
words, and the presented string: We did this manually both 
because deletion makes this classification non-trivial and so 
as to learn from the errors users made. 

Distance measures are reported as centimeters of 
movement in the input plane.  

Results 

Text-Entry Rate  
Figure 3 shows the mean text-entry rate per participant over 
sessions. Participants reached a mean text-entry rate of 20.6 
WPM (SD = 7.3) in the last session, which is 75% faster 
than the first session (M = 11.8 WPM). The development of 
text-entry rates in Figure 3 indicates that participants could 
improve further with more practice. As expected, a repeated 
measures analysis of variance (RM-ANOVA) on WPM 
with session as factor revealed a main effect, F(9, 45) = 
17.593, p < .001. We also found participants’ movement 
speed to consistently increase over sessions (70% from first 
session to last session) as users were familiarized with 
Vulture. An RM-ANOVA on movement speed with session 
as factor showed a main effect, F(9, 45) = 12.916, p < .001, 
providing a potential explanation of the increased 
performance over time. 
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Figure 3 also suggests large performance differences among 
participants. This is related to differences in movement 
speed: the mean movement speed of the fastest participant 
was 155% higher than that of the slowest.  

Errors 
The mean MWD error rate was 4% (SD = 9.3). An RM-
ANOVA with session as factor did not reveal a main effect, 
F(9, 45) = .699, p = .707. Of the 2400 transcribed phrases, 
1941 phrases (80.9%) contained no transcription errors and 
for 1330 (55%) of those no corrections were made. 
Surprisingly, the highest MWD error rate (M = 8%) was 
found for the participant with the lowest text-entry rate, 
indicating that acceptance of errors in the transcribed string 
may not be the primary factor for higher text-entry rates. 

Interaction with Vulture 
Next, we look in more detail on how users interacted with 
Vulture. Table 1 shows an overview of users’ actions. The 
table reports median durations and distances so as to reduce 
the influence of outliers. The most frequent action was 
match, writing a word gesture and implicitly confirming the 
default suggestion (73%). In 9.7% of the word-affecting 
actions the user had to select another word than the default. 
Performing a select is generally done either because of 
word ambiguities (words with the same optimal shape) or 
due to the shape being close, but not close enough to make 
the intended word a match. In 8.1% of the actions, users 

had to undo the gesture they had produced, presumably 
because the intended word was not among the alternatives. 
In 9% of the actions, users had to delete a previously 
confirmed word to fix errors earlier in the transcribed 
string.  

Table 1 also shows the correctness of word production 
compared to the users’ intended word. It is seen that 3,070 
of the 16,356 (19%) produced word-gestures are either 
undone or deleted, suggesting that a relatively large amount 
of time is spent correcting errors. 

For the match class, 18% of the words were incorrect, 
whereas for the select class only 3% were incorrect. For the 
matches, participants seem to have produced some 
unintentional word-gestures, resulting in unintentionally 
confirmed words. This typically occurred when participants 
did only small finger movements when pinching. We 
identified 966 of the 2,022 incorrect gestures with a 
duration of less than 100ms (48%) that we deemed as 
unintentional.  

For correct words, the gesture time is larger for matched 
than for selected words. This can in part be explained by 
increased precision in participants’ gestures as expressed by 
the mean sample distance and gesture start/end distance in 
Table 1.  

The low duration and length of word gestures that are 
undone have two potential explanations: (1) some of the 
very short word-gestures caused by the pinch 
implementation will have to be undone; (2) participants 
were often observed to realize an error and abandon their 
word-gesture early, possibly resulting in a lower median 
gesture duration and length than other classes of action. 

The median accuracy measures for correct words are 
generally relatively precise taking into account the actual 
motor space key-width of 1.8 cm. We see this as an 
indication that participants continue to be visually bound 
rather than starting to rely on recalled shapes as suggested 
by Kristensson and Zhai [13]. The study design does not 
allow us to conclude if participants are visually bound, but 
the indication is supported by our own experiences from the 
development process, where we continually felt bound by 
visual feedback rather than typing based on gesture recall. 

 
Figure 3: Text-entry rates in Words Per Minute (WPM) over 
sessions with error bars showing 95% confidence intervals. 

 

 Class (% of 
total) 

 Correct N Gesture 
Duration 

(s) 

Selection- / 
Backspace-Click 

Duration (s) 

Mean Sample 
Distance 

(cm) 

Gesture Start 
Distance 

(cm) 

Gesture End 
Distance 

(cm) 

Gesture 
Length 
(cm) 

Gesture 
Speed 
(cm/s) 

Match (73.2%) Yes 11130 2.28   0.54 0.36 0.36 18.93 8.13 
No 2022 0.135   3.32 0.78 3.40 0.00 0.00 

Select (9.7%) Yes 1689 1.9 1.82 0.77 0.37 0.41 16.94 8.99 
No 57 1.63 1.9 1.44 0.43 0.77 19.20 9.20 

Undo (8.1%)   1458 1.28 1.86 2.84 0.71 1.89 8.91 6.60 
Delete (9.0%)   1612  0.18            

Table 1: The word-affecting actions done with Vulture (N = 17,968). Mean Sample Distance is the mean distance between the 
individual samples of the resampled input shape and the resampled optimal shape of the intended word. Gesture Start/End 

Distance is the distance from the start/end point of the input gesture to the start/end point of the shape of the intended word. 
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Improving Vulture 
We did two improvements to Vulture based on the results. 
First, we modified the pinch implementation so as to reduce 
the number of unintended word-gestures. 

Second, the interaction data provided by the study allowed 
us to adjust the parameters of the recognition algorithm. 
Optimization of a WGK based on SHARK2 is a non-trivial 
task due to the interactions between the different channels 
[11]. Hence, the optimizations did not aim to find a globally 
optimal set of parameters. Instead they were done by 
running the recorded word-gestures through permutations 
of parameters, aiming to bring as many word-gestures as 
possible into the match and select categories. We ended up 
using a set of parameters that resulted in approximately 5% 
more of the total gestures being matched.  

STUDY 2: TOUCH AND GESTURE RECALL 
The results from Study 1 show that WGKs can improve text 
entry in mid-air. However, there is a discrepancy compared 
to the text-entry rates of 25 WPMs that have been reported 
for touch-based WGKs after just 40 minutes of practice 
[36]. In order to directly compare the performance of 
WGKs in mid-air and touch, we conducted a second study. 
In particular, we were interested in understanding how the 
separation of motor space and display space impacts 
performance. Also, while we saw an increase in 
performance over time in Study 1, we were unable to tell 
whether users become faster because they learn the shapes 
of familiar words and shift from visually-guided tracing of 
words [36]. Thus, we examine how well users recall word 
gestures. 

Study Setup 
For the mid-air interaction, the same apparatus was used as 
in Study 1. Touch on the large display was detected with 
diffused surface illumination. Input from six cameras was 
analyzed using Community Core Vision and multiplexed to 
form input for tracking touch points. 

The touch WGK used the same algorithm and parameters as 
the mid-air WGK. However, the touch keyboard was scaled 
and relocated to the size of the motor space of the mid-air 
keyboard  (20 x 5.5 cm), making it comparable to the size 
of the keyboard on a landscape oriented 10.1-inch tablet. 

Study Design 
The study used a between-subjects design with input 
modality as the independent variable: One group of 
participants used Vulture, the other group used the same 
WGK implementation with touch interaction. A between-
subjects design was used to avoid knowledge transfer and 
other interference between touch and mid-air conditions. 

Each session consisted of two parts. First, participants 
repeatedly transcribed three phrases from the MacKenzie 
and Soukoreff corpus [16]. To select the phrases for 
transcription, the mean WPM for each phrase was 

calculated for the last session of study 1. The three phrases 
selected were those with the WPM closest to the mean 
WPM of that session (“destruction of the rain forest”, “an 
offer you cannot refuse”, “dolphins leap high out of the 
water”). 

The second part tested the participants’ ability to recall 
word-gestures. Participants had to produce each of the 15 
unique word gestures that comprised the transcribed 
phrases. They had no visible keyboard on the display, and 
no cursor. A blank rectangle marked the previous location 
of the keyboard. 

Participants 
We recruited 12 paid volunteers (5 male), all right-handed. 
None of them had participated in Study 1. The participants 
were randomly assigned each of the two conditions (six 
participants each). Participant ages ranged from 18 to 31 
years (M = 24.4). Participants’ previous experiences with 
WGKs were rated between 1 and 4 (M = 1.8) and their 
written English skills were between 5 and 7 (M = 5.6); 
scales as in Study 1. 

Procedure 
Before starting the actual text entry, participants were 
allowed to familiarize themselves with the operation of the 
keyboard. We encouraged participants to experiment with 
doing fast movements during training. 

After training, participants transcribed 9 blocks of 6 phrases 
(2 repetitions of each phrase per block in randomized 
order), resulting in a total of 648 transcribed phrases. 
Participants were allowed to rest between blocks. Text 
entry is completed as unrestricted text entry, allowing users 
to delete and correct previously entered text. Participants 
were instructed to perform the text entry tasks as in Study 1. 

After transcribing all the phrases, participants were asked to 
produce each of the 15 unique words in the phrases. For this 
part, only the word that the users were to produce and the 
keyboard frame (that is, without any keys) was shown. 
Participants received no feedback on touch or mid-air 
tracking. Participants had to produce gestures based only on 
their memory of the word gestures as well as the location 
and size of the input space. Participants were asked to 
produce each word twice. The words were shown in 
randomized order.  

Results 

Text-Entry Rate 
Figure 4 shows text-entry rates for the two methods over 
the blocks of the study. An RM-ANOVA with method as 
between-subjects factor found touch to be significantly 
faster than mid-air, F(1, 10) = 10.681, p < .05. On the last 
block, touch text entry (M = 47.5 WPM) was 69% faster 
than mid-air text entry (M = 28.1 WPM). Compared to the 
first study, the initial text-entry rates are much higher. This 
suggests either that the optimizations of the recognition 
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algorithms have had an effect or that the instruction to try 
fast movements during training boosted the initial 
performance. The reason is most likely a combination of 
both. Touch is 26% faster on the last block than on the first. 
Mid-air is 24% faster. 

Errors 
An RM-ANOVA with method as between-subjects factor 
found that the MWD error rate for touch (M = 3.7%, SD = 
8.1) and mid-air (M = 1.7%, SD = 5.7) was not significantly 
different, F(1, 10) = 2.648, p = .135.  

Interaction With Vulture 
Table 2 categorizes participants’ behavior into the same 4 
classes as in Study 1 and shows that touch and mid-air have 
similar behavior compared to Study 1, but with a slightly 
higher percentage of matched words for mid-air. It is worth 
noting that the improved match percentage is similar to the 
~5% effect of the WGK optimization. 

Study 1 found gesture speed to be the most important factor 
affecting text-entry rate. Touch gesture speed (M = 21.44, 
SD = 13.83) in study 2 is 74% faster than mid-air (M = 
12.36, SD = 4.89). Comparing this to the 69% difference in 
text-entry rate supports that gesture speed is a good 
indicator for text-entry rate. 

Recall 
We analyzed participants’ recall with regards to the 
location, size, shape of gestures, and gesture speed. As 
expected, participants were more accurate in recalling the 
location and size of gestures with touch input than in mid-
air because they could point directly to the keyboard frame 
on the display. This can be seen from Table 3, which shows 
data for word gestures produced in the text entry part of the 
experiment (the first two rows) compared to participants’ 
recall of the word gestures (the last two rows). We note two 
important findings: (a) Gesture start distance averaged 
about 1 key-width for touch compared to more than 5 key-
widths for mid-air; and (b) participants made twice as long 
recall gestures as they did in the text-entry part for mid-air 

input, whereas recall gestures and text-entry gestures were 
comparable in length for touch input. 

In order to assess participants’ ability to recall the shape of 
word-gestures, we ran the recalled gestures and the text-
entry gestures through Vulture’s shape channel (note that 
we used only the shape-channel in order to normalize for 
location offsets). Table 3 also shows how the intended word 
would be ranked if only the shape channel was used (the 
very high rankings indicate that the shape channel alone is 
very poor). The ranks for the recalled gestures are more 
than double that of the text-entry gestures, indicating that 
the participants’ ability to recall the shapes of gestures was 
low. Moreover, participants seem to recall gestures worse 
for mid-air (rank 808.7) compared to touch (rank 696.3). As 
for participants’ ability to redo shapes from memory, 
several participants stated that they recalled gestures by 
imagining the keyboard layout in front of them, thus 
making them bound by an imagined keyboard rather than 
relying on remembered movement patterns. 

Touch and mid-air show very similar movement speed in 
the recall conditions, whereas participants’ movements are 
much slower for mid-air during text entry. This suggests 
that visibility of the keyboard slows participants only for 
mid-air input.  

DISCUSSION 
We have suggested that WGKs may be beneficial to mid-air 
text entry. The issues in designing Vulture, a WGK that 
works in mid-air, have been described and two studies 
aiming to characterize its performance have been run. Next 
we try to answer some remaining questions about WGKs. 

Do WGKs in mid-air work? 
Study 1 showed text entry rates of 20 WPM; Study 2 
showed 28 WPM using a small phrase set. Earlier studies of 
mid-air text entry have found 13.2 [18] to 18.9 WPM [27]. 
Thus, the studies indicate that Vulture provide text-entry 
rates that surpass earlier work.  

Study 2 showed that Vulture worked comparably to touch 
in some aspects: an equal number of errors were made, the 
types of actions made were similar, and the gestures 
produced were comparable. However, participants were 
much slower at making gestures in mid-air than for touch; 
text-entry rates, therefore, were also about 60% lower. Due 
to the increased complexity of performing mid-air text entry 
compared to touch-based text entry, we did not expect mid-
air text entry to compete with touch input. This hypothesis 
was confirmed by our studies. 

Zhai and Kristensson theorize that the use of WGKs 
“automatically shifts from the ease end (visual tracing) to 

 
Figure 4: Text entry rates in words per minute (WPM) over 
blocks with error bars showing 95% confidence intervals. 

 

Method Match Select Undo Delete 
Mid-air 78.4% 8.6% 7.9% 5.1% 
Touch 72.7% 9.4% 10.2% 7.7% 

Table 2: Distribution of Study 2 interaction classes across 
mid-air and touch interaction. 
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the efficient end (recall gesturing)”. Participants in the 
present studies did not seem to shift from visual tracing. In 
contrast, they seemed to depend on visual feedback even 
after substantial training (Study 1) and after practicing the 
same words repeatedly (Study 2). 

Why are mid-air WGKs slower? 
Figuring out why Vulture was slower than touch seems to 
be key to improving it. We see three potential explanations. 
First, the input plane and the display plane are decoupled in 
mid-air text entry. Users must therefore mentally couple 
their gestures in motor space to the keyboard and feedback 
on the display; the principle of stimulus-response 
compatibility [24] suggests that difficult. 

Second, users of Vulture seem to rely heavily on visual 
feedback; this has been shown problematic in other studies 
of text entry [32]. Data suggest that mid-air users have 
slower movement speed than touch users, but that they start 
and end equally precisely; across both studies, they seem to 
have emphasized accuracy over speed. This observation is 
supported by the increased movement speed for the mid-air 
recall condition. 

Third, users of Vulture must explicitly delimit words by 
pinching, while touch provides implicit delimiting of 
words. Several participants said that pinching was natural in 
that it resembled gripping a pen. However, pinching adds to 
the complexity of text entry in mid-air compared to touch 
input.  

How can mid-air WGKs be improved? 
A first potential improvement of Vulture would be to pace 
users, with the aim of increasing their gesture speed. Ideas 
for doing so include diminishing visual feedback based on 
speed or diminishing visual feedback over the course of a 
gesture (strong initially, then gradually removing feedback).  

A parameter of the design of Vulture that could be varied is 
the size of the motor space. In particular, reducing the size 
of the users’ gestures might increase their speed and 
decrease accuracy.  

The results on gesture recall from Study 2 indicate that text 
entry with no visual feedback does not seem promising. The 
idea proposed in Imaginary Interfaces [8] of using the non-
dominant hand to provide an explicit reference point might 
make recall of location better. This explicit point of 
reference could potentially provide the location context 
needed to support text entry with limited visual feedback. 

Word gestures seem to work well in mid-air, because they 
remove some of the need to repeatedly select characters, 
which makes other mid-air text-entry techniques tedious to 
use (e.g., [18]). Other techniques for predictive text entry 
may be beneficial to mid-air. One such technique is to add a 
language model to the gesture recognition engine: this 
would allow users to make less precise and thus faster 
gestures for producing the intended word. 

CONCLUSION 
Word-gesture keyboards (WGKs) allow efficient text entry 
by tracing of words instead of typing individual letters. 
WGKs are widely used on touch-based devices. This paper 
demonstrates how WGKs can be adapted for use also in 
mid-air. Empirical results from two studies show clear 
usability benefits compared to existing mid-air text-entry 
methods. Several issues in designing for mid-air interaction 
have been discussed. A key issue is that input space and 
output space are separated, which seems to make 
interaction more mentally demanding: Participants’ gesture 
movements in mid-air text entry were slower, but with the 
same accuracy as in touch-based text entry. Based on the 
empirical results we discussed ideas for improving mid-air 
WGKs and raised key questions for future research. 
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