
Interaction and Visualization Techniques for
Programming

Mikkel Rønne Jakobsen

Dept. of Computing, University of Copenhagen
Copenhagen, Denmark

mikkelrj@diku.dk

Abstract. Programmers spend much of their time investigating the source code
of a program, which often involves navigating and understanding delocalized
code fragments. This Ph.D. project explores the use of information
visualizations that are designed to support programmers in these activities. I use
controlled experiments to provide precise measurements of the usability of
visualizations and detailed insight into users’ interaction with visualizations.
Also, case studies are used to understand how professional programmers use
visualizations in realistic work activity. Overall, this research will contribute
empirically founded insight into the design and use of visualizations in
programming.

Application

My Ph.D. thesis has the working title “Interaction and Visualization Techniques for
Programming”. My scholarship is running from June 1st 2006 until May 31st 2009.
This paper describes the research problems that form the basis of the thesis and
outlines the dissertation research. I have also submitted a short paper to Interact 2007
called “Transient Visualizations”.

My advisor is associate professor Kasper Hornbæk (kash@diku.dk), Department of
Computing, University of Copenhagen.

The research area for this project is human computer interaction and information
visualization. The research topic is empirical studies of the use of information
visualizations to support programming.

Introduction

Programming is a complex human activity. Programmers are often required to
develop correct source code from a general description of how the program should
work. Programmers spend much of their time reading and understanding existing
code, which typically requires navigation between delocalized fragments of code. As
the source code grows in size and complexity, navigating and understanding the
source code becomes mentally demanding.



2      Mikkel Rønne Jakobsen

Information visualization concerns the use of interactive visual representations of
data to support problem solving. Use of information visualization to support
programming has received considerable attention from the research community [e.g.,
9,12]. Relatively few studies, however, have examined the effects of using
visualizations in programming. Further empirical studies are needed to understand
better how users interact with tools in modern programming environments and how
visualization techniques can enhance these interactions.

The complexity of activities performed by programmers that are engaged in
challenging tasks has implications for both design and evaluation of visualizations.
First, it is complicated to design usable visualizations that support the diversity of
activities that goes on in programming. Second, it is difficult to make realistic studies
that yield generalizable results. For example, source code editing is rarely considered
in design and evaluation of visualization techniques, even though writing and editing
source code is an integral part of programming. Thus, techniques that have a
documented positive effect on program understanding may prove impractical for
programming work in general. Furthermore, empirical research is often limited to
studying participants performing simple tasks, often with insufficient experience with
the programming tools that are used. Thus, further research is needed to found a broad
and deep empirical insight into the use of visualization in programming tools.

An overall hypothesis for this Ph.D. project is that information visualizations can
support navigation and understanding of source code. To investigate this claim,
visualizations are designed and evaluated. An important aim of this research is to
combine visualizations with tools in modern programming environments to support
the complex and varied work of professional programmers.

Related work

Recent studies of professional programmers performing maintenance tasks indicate
that navigating and understanding source code can be difficult and time consuming
[1,10,11]. Ko et al. [10] studied 10 expert Java programmers performing maintenance
tasks in a modern programming environment and found that participants spent up to
35% of their time navigating between dependencies in the code. Latoza et al. [11]
reported from an observational study of 7 professional programmers that the biggest
usability problem involved getting lost while navigating around the source code.
Specifically, reading and understanding code fragments that are located in different
parts of a source code file requires programmers to scroll or jump between locations
in the file [1]. Also, the files containing code fragments related to a task may be
located in different parts of the hierarchy of source code. Navigating between code
fragments in source code comprised of thousands of files requires considerable efforts
of the user. These findings indicate a potential for improving programming tools to
better support navigation and understanding of source code.

Furnas’s fisheye views [6] present an approach to supporting navigation and
understanding of source code. In fisheye views, all source code lines are assigned a
degree of interest based on their a priori importance and their relation to the line in
focus. Lines with a degree of interest below some threshold are removed from the



Interaction and Visualization Techniques for Programming      3

view. The resulting view provides both focus details and context information.
Combining a fisheye views with a source code editor may help programmers navigate
and understand the source code: it may improve understanding, and reduce the need
to navigate, because lines of source code that are useful given the programmer’s focus
of attention are shown in the view; it may allow programmers to navigate faster,
because target information is shown in the fisheye view.

Intuitively, visualizations that represent hierarchical data structures by visual
enclosure seem useful for representing hierarchically organized source code. Two-
dimensional representations of the entire source code provide programmers with an
overview that may potentially support navigation between delocalized source code.
Earlier research of two-dimensional representations of source code has focused on
other aspects. For example, SeeSys applies space-filling techniques to visualize
statistics in code that is hierarchically divided into subsystems, directories and files
[2]. Thumbnail views of source code arranged in two-dimensional space may
facilitate the forming of a spatial memory of the source code to support navigation
[4]. Evaluations may prove such two-dimensional arrangements of source code
useful. However, scaling such arrangements of thumbnails to show large amounts of
source code in its entirety may be difficult. In contrast, space-filling techniques such
as Treemaps can scale to very large amounts of data [5].

Research method and contributions

This research project mainly contributes empirically founded insight into the use of
visualizations in programming. My research aims to strengthen the empirical
literature on information visualization. For researchers, important areas of further
work are pointed out. For designers, my work may provide advice about how
information visualizations can be combined with modern programming environments.

I use elements from different empirical research methods. Controlled experiments
are conducted to provide precise measurements of usability of visualizations and to
describe users’ interaction with interfaces that contain visualizations. Case studies are
used to provide evidence about the benefits of visualizations used by professional
programmers doing normal work in their own environment. Combining different
methods can potentially increase the validity and trustworthiness of the outcome [8].

Prior research

Fisheye views of source code
My first research contribution published at CHI 2006 reported an experimental study
of a fisheye view of source code [7]. The design that was evaluated combined a
fisheye view with a source code editor by dividing the editor window into two areas:
the focus area comprised the editable part of the view and the context area contained
mainly readable context information. Semantic relations between parts of the source
code were included in the calculation of the degree of interest. The fisheye view was
fully integrated with the Eclipse development environment.



4      Mikkel Rønne Jakobsen

The experiment compared the usability of the fisheye view with a common, linear
presentation of source code. Sixteen participants performed tasks significantly faster
with the fisheye view, although results varied dependent on the task type. The
participants generally preferred the fisheye view and analysis of participants’
interaction with the fisheye view showed effective use of the context information to
complete tasks. Results indicated that semantically related information is important,
while source code displayed because of a high a priori degree of interest is less useful.
Limitations of the experiment call for follow-up studies. First, participants in the
experiment were given relatively short practice time with the fisheye view and were
thus not confident in using the fisheye view. Second, realism of the programming
environment was reduced because the tools available to the participants in the
experiment were limited. Third, the study investigated only simple programming
activity. Questions raised include (1) what types of information to include, (2) how to
effectively use display space, and (3) how to improve interaction in the fisheye view
to facilitate both investigation and editing of source code.

Transient visualizations
As mentioned above, a fisheye view was found to support participants in task
involving navigation and understanding. However, some participants expressed
concern that the fisheye view could be inappropriate for writing and editing code
because they want a large view of source code for those tasks [7]. One idea is to allow
users to call up the fisheye view on demand.

In general, transient use of information visualization close to the user’s focus of
attention presents an approach to support specific contexts of use without permanently
changing the user interface. Using transient visualizations to facilitate infrequent and
unpredictable contexts of use, the original permanent view can be dedicated to
information used in frequent contexts of use. For example, information needed for
navigating to dependencies in the code could effectively be shown on demand in a
transient fisheye view of source code. Experimental studies are planned as part of this
project to investigate the usefulness of transient visualizations, in particular with
regard to programming.

To obtain empirical evidence about the usefulness of transient visualizations, I
conducted an experiment. Twenty participants performed search and navigation tasks
using map interfaces. One interface contains an overview permanently fixed in the
upper-right corner of the detail window. In another interface, users can temporary call
up an overview at the mouse cursor position. Results show clear preference for the
interface with the transient overview. However, no overall difference between the two
interfaces was found for task completion times and accuracy.

Future research

Fisheye views of source code
Currently, I plan a controlled experiment to compare interfaces that use transient and
permanent fisheye views of source code. Fig. 1 shows part of the interface that uses
the transient fisheye view of source code. The experiment combines a study of



Interaction and Visualization Techniques for Programming      5

Fig. 2. Preliminary design of a map
visualization of Java source code using a
treemap approach.

participants performing maintenance tasks, with measurement of usability in repeated
trials involving navigation and understanding tasks. The experiment aims to uncover
whether transient fisheye views can be used for navigating and understanding source
code efficiently, without compromising on a large view of code for reading and
editing. Additionally, participants will get adequate training to be proficient with the
interface prior to measurements of usability.

Next, I am planning a case study to investigate how professional programmers use
fisheye views in real work. The study aims to observe participants and collect
quantitative information about their use of fisheye views of source code. Establishing
a protocol of programming work will enable detailed analysis of interaction patterns
in the use of fisheye views compared with a traditional, linear view of source code. A
prerequisite for the study to yield useful results is a stable and usable interface that
programmers will use in their work.

Transient visualizations
Results from the ongoing experiments with transient visualizations that are part of this
project will be consolidated to provide an empirical basis for discussing the benefits
and limitations of transient visualizations.

Map visualizations of source code
Two-dimensional map visualizations are investigated with the aim of supporting
understanding and navigation of source code. Fig. 2 shows a preliminary design of
such a map, which represents the entire source code of a Java program. Map
visualizations may utilize spatial cognition to provide programmers with an overview
of the entire source code. One use of such a map is to highlight those delocalized code
fragments that are being investigated in a maintenance task, for example by
highlighting code that has been read or edited. Other possible uses include visualizing
dependencies in the source code to support understanding or visualizing results of a
search in source code to help programmers find and navigate relevant code.

Fig. 1. Detail screenshot of a transient fisheye
view of source code that uses popup windows
above and below the editor window to show
program lines related to the user’s focus.



6      Mikkel Rønne Jakobsen

An initial study is planned to uncover important factors in the design of the visual
representations in maps. For example, the spatial layout of the source code
representation must be stable to facilitate spatial cognition. Also, appropriate
information residue or landmarks are needed to find information for navigating in the
source code. User studies of participants performing tasks that target search and
spatial memory are needed to investigate whether maps of source code can support
the forming of spatial memory. I plan controlled experiments to compare the use of
maps to conventional tools, and case studies to examine how programmers will adopt
map visualizations in their programming work practices in the long term.

References

1. Brian de Alwis, Gail C. Murphy (2006). Using Visual Momentum to Explain
Disorientation in the Eclipse IDE. Proc. VL/HCC, p. 51-54.

2. M. J. Baker and S. G. Eick (1995). Space-filling software visualization. Journal of Visual
Languages and Computing, 6(2):119–133.

3. B. B. Bederson, B. Shneiderman, and M. Wattenberg (2002). Ordered and quantum
treemaps: Making effective use of 2d space to display hierarchies. ACM Trans. Graph.,
21(4):833–854.

4. R. DeLine, M. Czerwinski, B. Meyers, G. Venolia, S. Drucker, and G. Robertson (2006).
Code thumbnails: Using spatial memory to navigate source code. Proc. VLHCC, p. 11–18.

5. J.-D. Fekete and C. Plaisant (2002). Interactive Information Visualization of a Million
Items, Proceedings of InfoVis’02, p.117.

6. G. W. Furnas. (1981) The FISHEYE view: A new look at structured files. Technical
Report #81-11221-9.

7. M. R. Jakobsen and K. Hornbæk (2006). Evaluating a fisheye view of source code. ACM
CHI Conference, p. 377–386.

8. J. E. McGrath (1995) Methodology Matters: Doing Research in the Behavioural and
Social Sciences, in Baecker, R. M. et al. (eds.) Readings in Human-Computer Interaction,
Morgan Kaufmann Publishers Inc.

9. B. A. Price, I. S. Small and R. M. Baecker (1992). A Taxonomy of Software
Visualization, Proceedings of the 25th Hawaii Int. Conf. on System Sciences, p. 597-606.

10. A. J. Ko, H. Aung, and B. A. Myers. (2005). Eliciting design requirements for
maintenance-oriented ides. Proc. ICSE, p. 126–135.

11. T. D. LaToza, G. Venolia, and R. DeLine. (2006). Maintaining mental models: a study of
developer work habits. Proc. ICSE, p. 492–501.

12. M.-A. Storey (2001). SHriMP views: an interactive environment for exploring multiple
hierarchical views of a Java program. ICSE 2001 Workshop on Software Visualization.


